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General reversible step-growth polymerization in homogeneous continuous-flow stirred tank reactors 
(HCSTRs) has been modelled by monomer having different reactivity and the moment closure problem 
has been solved. From dimensionless mole balance relations for all species, the generation relation has 
been derived. The resulting equation is a non-linear ordinary differential equation whose analytical solution 
yields all moments of the molecular-weight distribution to within an arbitrary constant. We have determined 
this constant through the molecular-weight distribution of the polymer determined in our previous paper. 
Sometimes high vacuum is applied in order to form polymer of high molecular weights. On doing this, 
the condensation product as well as the polymer leaves the reaction mass through flashing. We have 
examined the effect of flashing upon the molecular weight distribution of the polymer formed in HCSTRs. 
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INTRODUCTION 

Step-growth polymerization of bifunctional monomers 
gives linear polymer and can be schematically represented 
by: 

Pm+P.  "~,+t'k"~-~. Pm+.+W m,n= 1, 2 . . . .  (I) 

where P., and P. are polymer molecules of chain lengths 
m and n respectively. For every m and n, equation (1) 
gives an elementary reaction and it is thus seen that there 
are infinite elementary reactions in step-growth polymer- 
ization. Above, W represents a low-molecular-weight 
condensation product and kp,m,, and k'p,,,+,, are the rate 
constants for the forward and reverse steps. 

We have already observed in the previous part of this 
series 1 that the polymer formed by a step-growth 
mechanism has a molecular-weight distribution. One 
defines the kth moment, 2", of a distribution as: 

2* = ~ [P,] k=0 ,  i, 2 . . . .  (2) 
n = l  

where [P,] represents the concentration of species P, 
having chain length n. The reason for preferring moments 
over the molecular-weight distribution (MWD) is that 
some of these can be conveniently measured by 
experiments. The basic purpose of this paper is to 
determine analytically the moments of the distribution, 
which are few. 

With the kinetic model for reversible step-growth 
polymerization, as discussed in our earlier work ~, one 
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can establish mole balance relations for P, species 
for all chain lengths n. With these M W D  equations 
for homogeneous continuous-flow stirred tank reactors 
(HCSTRs), it is possible to derive generation relations 
for various moments defined by equation (1). It is found 
that 2* gives the total number of repeat units in the 
reaction mass, which is invariant. The generation relation 
for the zeroth moment 2, involves terms in 2* and 2*. 
But as 2* is invariant, it can be determined analytically. 
However, the generation relation for 2* involves terms 
in 2* and lower moments, and that for 2, involves terms 
in 2* and lower moments, and so on. It is thus seen that 
27, 2,,  2", etc., cannot be determined without additional 
information, and this is referred to as the moment closure 
problem 2. 

In the literature 3-5 in order to evaluate moments, 
workers have assumed an approximate form of the 
molecular-weight distribution and related 2* to 2", 2* 
and 2,. Ideally, one would have liked to use the exact 
distribution, which unfortunately is not known. In the 
absence of this, Hulbert and Katz 6 have used Laguerre 
polynomials arbitrarily as the approximate M W D  and 
determined 2, in terms of 2", 2~' and 2*. Subsequent 
works have assumed the M W D  to be given by the 
Schulz-Zimm distribution, in this way developing the 
approximate moment closure relation 6-8. 

In this paper, using moment-generating function 
G(s O) defined as: 

G(s, 0)= ~ s"P. (3) 
n = l  

we develop the generation relation for G(s, 0). This is 
found to be a Riccatti-type ordinary differential equation. 
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Under the transformation of variables, this is changed 
into a second-order linear ordinary differential equation, 
which has singularities at s = 0 and s = 1. We showed in 
the previous part of this series I that the solution around 
s = 0  gives the MWD of the polymer, while in this paper 
we examine the solution around s=  1, which gives the 
moments of the distribution. In our efforts to find the 
moments of the polymer, we show that it can be done 
to within an arbitrary constant. The latter can be 
determined with the solution around the singularity at 
s = 0. In this paper we have in this way determined all 
the moments of the distribution. 

THEORETICAL D E V E L O P M E N T S  

We have modelled the general kinetics of step-growth 
polymerization by assuming that the monomer reacts 
with itself at a different rate. This means that our kinetic 
model is given by: 

km,=kll when m=n= 1 

kin, = 2kp when m 4= n, for m, n = 2, 3 . . . .  (4) 

kmn = k p  when m = n, for m = n = 2, 3 . . .  

In Figure I we show a schematic diagram of a HCSTR, 
and assume that under the reactor conditions, the 
polymer can flash along with the condensation product. 

Assuming steady-state operation of the HCSTR and 
allowing for flashing, the mole balance relations for an 
isothermal reactor are given by: 

oc 

(P1 - -  P l o ) / 0 -  -- 2(R-- 1)P 2 -  2P12 o + 2flW ~ P, 
r = 2  

+ (pw/pOw)P1 (5a) 
(X3 

(P2 - P 2 o  ) / 0  --- RP 2 - 2 P 2 , ~  o - f l W P  2 + 2fl W ~ er  
r = 3  

+ (Pw/pOw) P2 (5b) 
n--1  

(Pn-Pno)/O= ~ PrPn-r- 2Pn2o-flW(n- l)P n 
r = l  

+2flW ~ Pr+(pw/pOw)P n (5c) 
r=n+l 

(W-  Wo)/O = (R -- 1)P 2 + 22 -- flW(~ 1 - -  ~0) 

+ (pw/POw)W- (pw/Mw2*oOw) (5d) 

[~.] , [El L ©,... 

Figure 1 

1 

[~ ].ILl .... 

H C S T R  

S c h e m a t i c  d i a g r a m  of  H C S T R  

where 

R = kl 1/kp (6a) 

fl = k'p/kp (6b) 

0 = kp,~* 0 V/F o (6c) 

P.  = [P.]/2* o (6d) 

0 w = kp, ,~ '  o V/Fw (6e) 

The above kinetic equations can be combined into one 
single equation using the moment-generating function G 
defined as: 

G= ~ s"P. (7) 
n = l  

The resulting equation is 

1 1 ( (l+s) W 
c'~s:flWs - f lWs 22°-~ ( l - s )  ~-0 pOwJ 

1 / 'G  O 2 
+ f l W s L ~ - + P l ( R - 1 ) ( s Z - 2 s ) + 2 f l W l t )  (8) 

The non-linearity in (8) is eliminated by using the 
transformation: 

G = -flWs(~y/Os)/y (9) 

The variation of y is the following second-order 
hypergeometric differential equation: 

s(1 - s) d2y/ds 2 + [ct'(l - s) + 2] dy/ds + 

[~2o0(1 -s )R(s)+(a-%)]y=O (10) 

where 

% =l/flWO ( l la)  

= % + 22o/flW (1 l b) 

~' =o~-pw/pOwflW ( l lc)  

R(s) = R o + RIS + R2 s2 + R3 s3 + . . .  (1 ld) 

Ro = P , o -  ZP~(R-1)O ( l le)  

R 1 = P2o + P2( R - 1)0 (1 lf) 

R, =P ,+ l ,o  n>~2 ( l l f )  

On examination of equation (10), it is observed that 
it has two singularities, one at s = 0 and the other at s = 1. 
The solution around the former gives the MWD of the 
polymer, which has been examined in the previous part 
of the study x and is summarized in Table I. The solution 
around s = 1 gives the moments of the distribution in a 
natural way, which is shown as follows. 

On examining the defining equation (7) for the 
moment-generating function G, it is seen that the 
coefficient of s" represents the molar concentration of 
species P.. If we substitute: 

s=  1 - u  (12) 

and expand term by term, equation (7) becomes: 

G= 2o-- 21u + ½(22-- 21)u2 + ... 

+ ( - - 1 ) k (  °~ n ( n - 1 ) ( n - 2 ) ' ' ' ( n - k + l )  ) , ~ 1  k' P,  x 

uk+ . . . .  (13) 

It is thus seen that the solution of equation (10) around 

POLYMER, 1989, Vol 30, September 1743 



Moment closure problem in step-growth polymerization: A. Kumar and A. Khanna 

Table 1 Solution around singularity s = 0  

Series solution 9 

Indicial equation 

Y= Z C ,  s '+" (1) 
m = o  

a [ ( a -  1) + (£  + 2)] = 0 (1.2) 

Roots of indicial equation 

a l = 0  a 2 = - ( l + ~  ) 

a 2 leads to infeasible solution 

General solution for y 

y = C O Z r,.s ~ r o = 1, r,. = C.,/C o 
m=0 

Recursive relation for r,, 

rm + 1 = { [ m ( m -  1 + ct ' ) -  (~ - %)]rm + ~20(Z,,- 1 - Era)}/ 

(m+ 1)(m+~'+2)  

where 

"Ym = ~ Rjrm-j 
j=o 

l +a~s+azS2 + . . .  
G= - f l W r  ls 1 + bls + b2sZ + 

am=(m+l)rm+l/r 1 bm=r m 

M W D  of the polymer 

Pa =flWra 

(1.3) 

(1.4) 

(1.5a) 

(1.5b) 

flWrls(1 +cls+czs  2 . . . )  (1.6) 

r a - I  

cm=am-bm - ~ bjcm-j (1.7) 
j = l  

P.=f lWrlc ._  1 n>~2 (1.8) 

the singularity at s = 1 gives various moments of the 
distribution, We rewrite equation (10) in terms of u to 
obtain: 

u ( u -  1) d2y/du 2 - ( f u + 2) d y/du + 

[a~OuR*(u) + (~ - %)]y = 0 (14) 

Here, %, ~ and ~' remain unchanged in definition but: 

R*(u) = R* + R*u + R*u 2 + . . .  (15a) 

R~ = 200 - P~ (R - 1)0 (15b) 

R* = - (2,0 - 2oo)-  Pa2(R - 1)0 (15c) 

R ,=(__ l )k ( .~k  (n-1)(n-2).k, "" ( n - k ) )  Pn° k>~2 

(15d) 

In order to determine an analytical solution of 
equation (14), one can propose a series solution of the 
form: 

y=Co L rm um+~ (16) 
m = 0  

For this the roots of a are 3 and 0. Therefore, the general 
solution must have a logarithmic term because of the 
integral difference between the roots. The two solutions 
corresponding to tr~ = 3 and a 2 =0  are then written as: 

y l ( u ) = C o  L rmUm+3 (17a) 
m = O  

and 

yz(u)=C~ ~ r*um+k3Yl(U) In u (17b) 
m = 0  

Substituting the second solution in the differential 
equation for y reveals that the logarithmic term drops 
out because the product k3C o should be identically zero 
in order to keep 21 invariant. Therefore the overall series 
solution can be written as: 

y=C~ ~ r*u m (18) 
m = 0  

where 

r* = 1 (19a) 

and the coefficient series r* is obtained recursively from: 

(i + 1)(i-  2)r*+ 1 = [ i ( i -  1 + c()-- (~-- ct0)]r* - ~20Z*_ x 

(19b) 
i 

E*= Z R.*r.* • (19c) J t - J  
j = o  

Using the transformation: 

G = flW(1 - u)(~y/~u)/y (20) 

we revert back to G: 

G=fl~f*__ l +a*u+a*u2 + .. .  (21a) 
rg 1 + b* + b*u 2 + . . .  

= flW~r~, (1 + c*u + c'~u 2 + ...) (21b) 

where 

a* = [(i + 1)r*+l - ir*]/r* (22a) 

b* =r* (22b) 

and 
i - 1  

c* = a* - b * -  ~ c'b* (22c) j i - j  
J 

Comparing the above series solution of G with equation 
(13) gives the algebraic relationship for the moments: 

20 = flWr* (23) 

2, = -f lWr*c* (24) 

½(,h - ,h ) = 13Wr* c t  (25) 
~(23 - 322 + 220-f lWr*c* (26) 

2~(),4 -- 623 + 1122 -- 62,) = flWr*c* (27) 

and so on. 

RESULTS AND DISCUSSION 

On careful examination of the recursive relation in 
equation (19) it is seen that r* is indeterminate. This 
arbitrary constant can be determined only through 
knowledge of the M W D  of the polymer. Algebraic 
manipulation of equation (22) (at m=2)  and equation 
(25) yields the desired result: 

22-21 3 r * - 2 r * - r * ' r * { 2 r * - l - r *  + - -  (28) 
r* - 2 -  , \ r* 2flWr* 

o r  

r* 2r* 3=~  2+r~r~--~r*Z(l+r*)+~rx( .~xnEc.-x--21 ) 

(29) 
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Moment closure problem 

Flashing of the condensation product occurs when a 
vacuum is applied to the rector. This is done in order to 
push the overall polymerization in the forward direction 
and to obtain polymer of high molecular weight. Without 
flashing (i.e. F w = 0) we have the case of closed reactor 
operation in which stoichiometry is satisfied and the 
concentration of condensation product in the reactor is 
given by: 

W -  Wo + 2oo-2  o (30a) 

Above Wo and 200 are the condensation product and 
polymer in the feed. When vacuum is applied, two 
situations may arise: W alone leaves the reactor or W 
leaves along with the polymer. In the first case, W is 
determined by assuming vapour-liquid equilibrium 
(assumed to be governed by Raoult's law) between the 
reaction mass and escaping vapour. Here: 

P ° W / ( 2  o + W)= PT (30b) 

and 

W= (W° +2°°) 2 o -  PpwO (30c) 
(1 - pwO/pOw) Mw2*o(pOw - pwO) 

where PT is the total pressure of the system and pO is 
the vapour pressure of the condensation product. Above 
Fw is the rate at which condensation product is escaping 
from the HCSTR. 

In the situation when both condensation product and 
polymer evaporate, it is assumed that higher oligomers 
have a lower relative volatility and hence remain in the 
reaction mass. Only monomer P1 is assumed to leave 
the reactor, which we recycle after separation. In this 
case, the vapour-liquid equilibrium is given by: 

P°lP1/(2 o + W)+ pO W/(2 ° + W)= PT (30d) 

and equation (30c) remains valid. 
It is now an easy matter to obtain the moments of the 

polymer formed in HCSTRs. For given kinetic 
parameters (fl and R), feed conditions (specified R(s) in 
equation (11)) and reaction conditions (reactor pressure 
Px and temperature T), it is possible to determine if there 
is flashing. If there is no flashing, Wis given by equation 
(30a) and is substituted in equations (5a) and (31) for P1 
and 20. The net polymer balance is obtained by adding 
equations (5a, b, c) for all n: 

(20 - 200)/0 = - (R - 1)P 2 - 22 + flW(21 - -  )'0) 

+ (pw/POw)20 (31 ) 

We further observe that in equation (5a): 

~ P . = 2 o - - P  1 (32) 
n=2 

Equations (5a) and (31) are solved simultaneously. A 
convenient method of solving these is to use the 
Newton-Raphson technique. A trial value of 20 is 
assumed and the quadratic equation (5a) gives P~. The 
feasible value of P1 is substituted in the following 
rearranged form of equation (31): 

Fp = (2 o -  2oo)/0- ( R -  1)P21 - 2o z + flW(2~ - 2o) 

+ (pw/pOw)2o (33) 

For the correct value of 2o, Fp reduces to zero. Otherwise 
one updates the previous trial value of 2 o by moving along 
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Table 2 Algorithm for computation of moments of polymer formed 
in HCSTRs 

Given fl, R and 0 

Given reactor temperature and pressure 

- -  Check from equations (30b, d) if flashing of W and P1 occurs 

No flash 

, [Equation (30a) ] , 

W flashing 

[ Equations (30b) and (30c) ] 
% 

W and P flashing 

, [ Equations (30c) and (30d) ] 

Assume 2oo 

Determine P1 from equation (5a) 

Apply Newton-Raphson on equation (31) to give 20 

Check for convergence, update ;t o 

Calculate r i from equation (l.5a) 

Determine al, bl, c~ from equation (1.7) 

Calculate M W D  from equation (1.8) 

Calculate r* from equation (29) 

Evaluate higher moments from equation (13) sequentially 

the gradient (keeping 20 ~< 1). The value of Fp is checked 
and iteration is continued till convergence is achieved. 

When there is flashing one substitutes either equation 
(30b) or equation (30d) into (5a) and (31) and repeats 
the procedure for determining 20 and Pt.  

A flowchart for the computation is presented in Table 2. 
Once 2 o and Pt are evaluated it is an easy matter to 
determine the M WD and consequently the constant r~. 
Higher moments are calculated sequentially from 
equation (13) as shown in the chart. 

CONCLUSIONS 

We have solved analytically the moment closure problem 
in reversible step-growth polymerization carried out in 
HCSTRs with unequal reactivity of the monomer. The 
dimensionless mole balance equations for all species were 
first written down and then, with the use of the 
moment-generating function G(s, 0), they were combined 
appropriately to give its generation relation. This is a 
non-linear ordinary differential equation, which under 
transformation becomes a second-order linear differential 
equation. The latter has singularities at s =0  and s = 1. 
The extended power series solution of Frobenius has been 
proposed around both singularities 9. We show that the 
series solution around s = 0  gives the M W D  and the one 
around s--1 gives the moments of the distribution. 

The series solution around singularity s=  1 has an 
arbitrary constant r$, which, once evaluated, gives all 
moments of the distribution. It has been shown that r$ 
can be calculated only from knowledge of the MWD.  

In order to get high-molecular-weight polymer in 
HCSTRs a high vacuum is applied to push the overall 
polymerization in the forward direction. Depending on 
the vapour pressure of the oligomers, sometimes 
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low-molecular-weight polymer also escapes along with 
the condensation product. We have modelled all 
possibilities of flashing from the reactor. The limiting 
situation 0--,oo represents the polymer at equilibrium. 
The M WD for various flashing possibilities, and for 
equilibrium, have also been presented. We further show 
that whether we are considering vacuum application or 
equilibrium, the moment closure problem remains 
unaltered. Finally a computer algorithm has been 
presented which identifies whether there is flashing under 
the reactor conditions, then appropriately calculates ~o, 
P1 and W, which ultimately gives all moments of the 
polymer formed in HCSTRs. 
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